---------------------------------------------------------------------------------------------
I am honored that Raima Larter has asked me to be a guest blogger on Complexity Simplified. She has asked me to write about my interests in patterns in Nature and how these interests are related to complex systems science. I have happily accepted her assignment because it is my desire to become part of an open dialog on this subject.
From my perspective, patterns in Nature are complex dynamic systems. Ergo, the study of complex system science is the study of patterns in Nature. Nothing exists solely on its own. Patterns in Nature are not simply pretty flowers, rocks, seashells, or human beings. They are highly interconnected complex dynamic systems that are best described by their hierarchal connections with other patterns in Nature. Patterns in nature are manifestations of the organizing principles that define our universe.
As I see it, the goal of complexity science is to define patterns in the networks of connectivity that are contained within complex systems – searching for organizing principles that generate the order that is manifested in Nature's patterns.
An interesting example of interdependence within a set of complex systems is the King Penguin who lives in the waters and islands north of Antarctica. There are huge breeding colonies on South Georgia Island 800 miles east of the Southern tip of Argentina. The bird has an unusually long breeding cycle, taking some 14–16 months from the laying of an egg to offspring fledging. This long cycle dictates that the breeding colonies are occupied year-around and that chick behavior must include a defense against the cold winter.
The female penguin lays one egg. A newly hatched chick has only a thin covering of down and is entirely dependent on the parents for food and warmth -- spending the next 30-40 days balanced on its parents’ feet and sheltered by its pouch. During this time, the parents alternate every 3–7 days, one incubating while the other forages. After 40 days, to stay warm, many chicks form a tight group called a crèche. A few adult penguins stay behind to look after the chicks while the parents forage.
The interconnecting patterns in this complex system are many. The food chain in the ocean, the weather, the recognition of the chick by the parent, the crèche of juveniles, the overseeing of the crèche by adults other than parents, etc.
It is my hope that this post will generate some form of dialog about connectivity within complex systems in Nature. I invite your comments.